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David Simpson postulated (c. 1975–76) that the number of diagonals d that can be drawn in a convex
polygon of n sides is given by the expression

d D .n � 2/ C .n � 3/ C .n � 4/ C � � � C 2: (1)

Around the same time, David Benning conjectured the simpler formula

d D n.n � 3/

2
: (2)

Equations (1) and (2) can be shown to be equivalent. First, we write Simpson’s formula (Eq. 1) in the
more compact form
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Now apply some summation algebra:
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which is Benning’s formula.
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Benning’s formula can be arrived at simply. From each of the n vertices, we can draw n � 1 lines to the
n � 1 other vertices. But the two lines drawn to the two adjacent vertices form sides of the polygon, not
diagonals. Therefore only .n � 1/ � 2 D n � 3 diagonals can be drawn from each of the n vertices, for a total
of n.n�3/. But each diagonal has been counted twice, so the total number of unique diagonals is n.n�3/=2,
Q.E.D.
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