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David Simpson postulated (c. 1975-76) that the number of diagonals d that can be drawn in a convex
polygon of n sides is given by the expression

d=n-2)+nm—-3)+n—-4)+---+2. (1)
Around the same time, David Benning conjectured the simpler formula
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Equations (1) and (2) can be shown to be equivalent. First, we write Simpson’s formula (Eq. 1) in the
more compact form
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Now apply some summation algebra:
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which is Benning’s formula.



Benning’s formula can be arrived at simply. From each of the n vertices, we can draw n — 1 lines to the
n — 1 other vertices. But the two lines drawn to the two adjacent vertices form sides of the polygon, not
diagonals. Therefore only (n — 1) —2 = n — 3 diagonals can be drawn from each of the n vertices, for a total
of n(n —3). But each diagonal has been counted twice, so the total number of unique diagonals is n(n —3)/2,
Q.E.D.



