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1 Definition and Typical Applications

The Clebsch-Gordan coefficient (see part 4 for alternate names and notations)
arises perhaps most fundamentally in the coupling together of two systems with
angular momentum j̄1 and j̄2 respectively to form a composite system of angular
momentum

j̄ = j̄1 + j̄2. (1)

The axial components j1z and j2z of the two systems in the uncoupled rep-
resentation are observables. Thus a complete set of commuting dynamical vari-
ables for the uncoupled representation is j̄1 ·j̄1, j̄2·j̄2, j1z, j1z, with corresponding
eigenvalues j1(j1 + 1), j2(j2 + 1), m1, m2.

In the coupled representation, neither j1z nor j2z commute with j̄ ·j̄ although
their sum, jz = j1z + j2z, does. So a complete set of observables for this case
is j̄ · j̄, j̄1 · j̄1, j̄2 · j̄2, and jz with respective eigenvalues j(j + 1), j1(j1 + 1),
j2(j2 + 1), and m.

An eigenstate |j j1 j2 m〉 in the coupled representation must be a linear com-
bination of product eigenstates |j1 m1〉 |j2 m2〉 of the uncoupled representation,
subject to the proviso that

m1 + m2 = m (2)

since (1) is a vector equation implying equality of each of the three components.
Of course, the magnitude j must lie between j1 + j2 and |j1− j2| since the three
vectors form the sides of a triangle. This latter stipulation is sometimes referred
to(1) by the symbol �(j1 j2 j).

This linear combination, then, may be written as

|j j1 j2 m〉 =
∑

m1,m2

C(j1 j2 j; m1 m2 m) |j1 m1〉 |j2 m2〉. (3)

The amplitudes C(j1 j2 j; m1 m2 m) are called the Clebsch-Gordan coefficients.
They vanish unless the following conditions are met:

�(j1 j2 j), m1 + m2 = m, |m1| ≤ j1, |m2| ≤ j2, |m| ≤ j. (4)
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A very common application arises in the integration of products of spherical
harmonics(1,2) Y�m. Specifically,

∫
�
�

�
�

∫
Y ∗

�′m′ YLM Y�m dΩ =

√
(2� + 1)(2L + 1)

4π(2�′ + 1)
C(� L �′; m M m′) C(� L �′; 0 0 0).

(5)
For any operator FLM = αYLM , then, its matrix element between states

|� m〉 and |�′m′〉 (with �, L, �′ integral) is

〈�′ m′ | FLM |� m〉 = α

√
(2� + 1)(2L + 1)

4π(2�′ + 1)
C(� L �′; m M m′) C(� L �′; 0 0 0).

(6)
For coupled states |�′ m′〉 where j̄ = �̄ + s̄ (s = 1/2), the following relation

can also be shown to be true:

〈j′ m′ | FLM |j m〉 = α

√
(2j + 1)(2L + 1)

4π(2j′ + 1)
C(j L j′; m M m′) C(j L j′; −1

2
0 −1

2
)

(7)
This bears a superficial similarity to (6) but applies to quite a different situta-
tion.

2 Explict Formulas

An explicit formula for the Clebsch-Gordan coefficient has been derived by
Racah(3):

C(j1 j2 j3; m1 m2 m3) = δm1+m2,m3

√
(2j3 + 1)/(j1 + j2 + j3 + 1)!

×
√

(j1 + j2 − j3)! (j2 + j3 − j1)! (j3 + j1 − j2)!

×
√

(j1 + m1)! (j1 − m1)! (j2 + m2)! (j2 − m2)! (j3 + m3)! (j3 − m3)!

×
∑

k

{(−1)k/[(j1 + j2 − j3 − k)! (j3 − j1 − m2 + k)!

× (j3 − j2 + m1 + k)! (j1 − m1 − k)! (j2 + m2 − k)! k! ]} (8)

Terms in the sum vanish unless all factorial arguments in the term are non-
negative. This limits the range of k to a finite set of values. (In practice, all
terms but one or two vanish.)

An elegant derivation of this formula has been given by Sharp(5).
Other explicit formulas exist(1,4) but are of lower symmetry than (8).
If one of the arguments be fixed in value, however, the formula simplifies

considerably. Along this line the following algebraic tables have been published:
j2 = 1/2, 1: Rose(1), Wigner(6).
j2 = 1/2 to 2: Condon and Shortley(2).
j2 = 5/2: Saito and Morita(7), Melvin and Swamy(4).
j2 = 3: Falkoff et al.(8).
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j2 = 7/2 to 5, and also
j1 + j2 − |m3| = 1 to 3: Shimpuku(9).

Numerical tables also exist. These fall into two categories:
a) Square roots of rational numbers:

j1 = 1/2, j2 = 1/2 to 7/2;
j1 = 1, j2 = 1/2 to 5/2;
j1 = 3/2, j2 = 3/2, 2;
j1 = j2 = 2: Heine(10).

j1 = 5, j2 = 1/2 to 6;
j1 = 11/2, j2 = 1/2 to 6;
j1 = 6, j2 = 1/2 tp 6: Shimpuku(9).

b) Decimal numbers:
j3 = 1 to 9/2 (10 decimal places): Simon(11).
j1, j3 = 1/2 to 10, j2 = 1 to 6 in integral steps

(7 decimal places): the present work.

3 Symmetry Relations and Other Properties

Using (8) the following relations can be derived:

C(j1 j2 j3; m1 m2 m3) = (−1)j1+j2−j3 C(j1 j2 j3; −m1 − m2 − m3) (9)
= (−1)j1+j2−j3 C(j2 j1 j3; m2 m1 m3) (10)

= (−1)j1−m1

√
2j3 + 1
2j2 + 1

C(j1 j3 j2; m1 − m3 − m2)(11)

= (−1)j2+m2

√
2j3 + 1
2j1 + 1

C(j3 j2 j1; −m3 m2 − m1)(12)

= (−1)j1−m1

√
2j3 + 1
2j2 + 1

C(j3 j1 j2; m3 − m1 m2)(13)

= (−1)j2+m2

√
2j3 + 1
2j1 + 1

C(j2 j3 j1; −m2 m3 m1)(14)

Also, if �1, �2, �3 be integers,

C(�1 �2 �3; 0 0 0) = 0 unless �1 + �2 + �3 be even (15)

and, finally,
C(j1 0 j3; m1 0 m3) = δj1j3 δm1m3 . (16)
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4 Alternative Names and Notations;
Related Quantities

The Clebsch-Gordan coefficient is variously called the Wigner coefficient, the
C-coefficient and the vector-coupling coefficient.

Some other notations for the coefficient are as follows:
Condon and Shorley(2): (j1 j2 j3 m3 | j1 j2 m1 m2), (j3 m3 | m1 m2),

(j1 j2 j3 m3 | j1 m1 j2 m2), (j1 m1 j2 m2 | j1 j2 j3 m3). All these are very
common in current literature.

Rose(1): C(j1 j2 j3; m1 m2).
Landau and Lifshitz(12): Cj3

m1m2
.

Blatt and Weisskopf(13): Cj1j2(j3, m3; m1, m2).
Wigner(6): s

(j1j2)
j3m1m2

.
Other notations can be found summarized in a table in Edmonds(14).
Related to the Clebsch-Gordan coefficient is Racah’s V -coefficient

V (j1 j2 j3; m1 m2 m3) = (−1)j3−m3 (2j3+1)−1/2 C(j1 j2 j3; m1 m2 m3), (17)

and Wigner’s 3-j symbol(6,14):(
j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2−m3 (2j3+1)−1/2 C(j1 j2 j3; m1 m2 m3). (18)

5 Method of Calculation and Arrangement of

Table.

The IBM-650 program used in computing this table was originally written as a
subroutine for evaluating matrix elements that arise in electromagnetic transi-
tions. The calculation is carried out using Racah’s formula (8) and is discussed
more fully in an Appendix.

Accuracy of the values is probably about one part in the last place (±10−7).
The tables were computed using this subroutine and a set of commands

to increment the arguments and arrange the output format. All those sets of
arguments which do not fulfill the requirements (4) yield zero coefficients are are
omitted from the table.

The arrangement of the table is as follows:
j2 = 1 to 6 (in integral steps)

j1 = 1/2 to 10
j3 = |j1 − j2| to min(j1 + j2, 10)

m2 = 0 or 1/2 to j2
m1 = −j1 to j1.

The most indented argument varies the most rapidly.
At the top of each page j2 is listed. A new page is begun if j2 changes its

value. In each column the current value of j1 is also tabulated. Arguments j3,
m1, m2 are shown for each entry; m3 is not shown, being in every case m1 +m2.
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C is the coefficient corresponding to the arguments. It is to be noted that
only values for m2 ≥ 0 are shown. For negative m2, symmetry relation (9)
may be used, while if it is desired that j2 be half-integral, relation (10) may be
used. In either case, the required change does not alter the magnitude of the
coefficient; the sign changes if the sign under S is -, it remains unchanged if S
is +. S is just the factor (−1)j1+j2−j3 .

No values are given for j2 = 0 since relation (16) can be used here.
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